Engineering
Mathematics
Multiplication of Matrices
Symmetric and Skew Symmetric Matrices
Question

If A=0tanα2tanα20 and I is the identity matrix of order 2, show that I+A=(IA)[cosαsinαsinαcosα].

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution
Verified BY
Verified by Zigyan
Given , A=[0tanα2tanα20]
LHS:I+A=[1001]+[0tanα2tanα20]=[1tanα2tanα21]
RHS:(IA)[cosαsinαsinαcosα]=[1tanα2tanα21][cosαsinαsinαcosα]
=[cosα+sinαtanα2sinα+cosαtanα2tanα2cosα+sinαtanα2sinαcosα]
=[cosαcosα2+sinαsinα2cosα2cosα,sinα2sinαcosα2cosα2sinαcosα2cosαsinα2cosα2sinα2sinα+cosαcosα2cosα2]
=[cos(αα2)/cosα2sin(αα2)/cosα2sin(αα2)/cosα2cos(αα2)/cosα2]          [cos(AB)=cosAcosB+sinAsinBsin(AB)=sinAsinB+cosAcosB]
=[1tanα2tanα21]
As LHS = RHS hence proved
Lock Image

Please subscribe our Youtube channel to unlock this solution.