Engineering
Mathematics
Properties of Definite Integral
Question

If ƒ(x)dx=Ψ(x),  then  x5ƒ(x3)dx  is equal to :

 13[x3Ψ(x3)x3Ψ(x3)dx]+C

 13x3Ψ(x3)x2Ψ(x3)dx+C

 13[x3Ψ(x3)x2Ψ(x3)dx]+C

 13x3Ψ(x3)3x3Ψ(x3)dx+C

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution

 f(x)dx=ψ(x)

 x5f(x3)dx

put x3 = t 3x2dx = dt 

 13tIf(t)IIdt=13[tf(t)dtΨ(t)dt]       [Using Integrating by parts]

 =13[x3Ψ(x3)Ψ(x3)d(x3)]

 =13[x3Ψ(x3)3x2Ψ(x3)dy]

Lock Image

Please subscribe our Youtube channel to unlock this solution.