Engineering
Mathematics
Conditional Probability
Question

In an entrance test that is graded on the basis of two examinations the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both ?

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution
Verified BY
Verified by Zigyan

Step - 1 : Assume two events and consider the condition.

Suppose that , A is event of passing the first exam.

and B is the event of passing second exam.

Given that probability of randomly chosen student passing first exam is

0.8 and passing second exam is 0.7.

so , p(A) = 0.8

p(B) = 0.7

Also given that probability of passing at least one of the exam is 0.95.

so p⊂A∪B = 0.95

Step - 2 : Find probability of passing both exam.

So event of passing both is (A∩B)

So we have to find P(A∩B)

As per rule we know P(A∪B) = P(A) + P(B) − P(A∩B)

⇒ P(A∩B) = P(A) + P(B) − P(A∪B)

⇒ P(A∩B) = 0.8 + 0.7 − 0.95

⇒ P(A∩B) = 0.55

Hence, Probability of passing both exam is 0.55

Lock Image

Please subscribe our Youtube channel to unlock this solution.