Engineering
Mathematics
Equation of Straight Line in 3D
Question

Match the statements in Column-I with the values in Column-II.

Column-I

Column-II            

(A) A line from the origin meets the lines   x21  =  y12  +  z+11  andx832  =  y+31  =  z11 

at P and Q respectively. If length PQ = d, then d2 is

(p) – 4       
(B) The values of x satisfying tan–1 (x + 3) – tan–1 (x – 3) = sin1  (35) are (q) 0

(C) Non-zero vectors  a,bandc satisfy  a.b=  0  (b    a)  (b  +  c)  =  0  and  2|b  +  c|  =  |b    a| 

If  a  =  μb  +  4c , then the possible values of µ are

(s) 5

(D) Let f be the function on [π,  π]  given by 

f(0) = 9 and f(x) = sin  (9x2)/sin(x2)  for  x    0

The value of  2π  ππf(x)dx  is       

 (s) 5
   (t) 6         

 

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution

(A) 

 x21=y12=z+11=r

  P (r + 2– 2 r + 1, r –1)

 xr+2=y12r=zr1=K

 K(r+2)8/32=y12r=zr1=K

K (r –1 + 1 – 2r ) = –2

K (–r) = –2

Kr = 2

 2+2K=8/32=K2.2+31

 2K2/32=K11

 13+K1=0

 K=23

   r = 3

 P(5,5,2)Q(5.23,5.23,2.23)

 d=52+52+22.13

 d2=549=6

(B)

 tan1(x+3)tan1(x3)=sin1(35)

 61+x29=34

8 = x2 – 8

 x = ± 4

(C)

 a.b=0

 a=μb+μc

 c=aμb4

 b+c=b+aμb4

 b+c=(4μ)b+a4

 (ba).(b+c)=0

 (ba)((4μ)b+a4)=0

 (4µ)|b|2=|a|2

so µ < 4

 |(4μ)b+a4|=|ba|

(4 – µ)2 b2 + a2 = 4 (b2 + a2)

3a2 = ((4–µ)2 – 4) b2

3(4–µ) = (16 + µ2 – 8 µ – 4)

12 – 3 µ = µ1 – 8µ+12

µ2 – 5µ = 0

µ (µ–5) = 0  µ = 0

µ  5 as µ < 4

(D)

 I=2πππsin(9x2)sin(x2)  dx

 I=4πππsin(9x2)sin(x2)  dx

 I=4π0πcos(9x2)cos(x2)  dx

 2I=4π0π(sin9x2sinx2+cos9x2cosx2)  dx=4π0πsin(9x2+x2)2sinx2cosx2  dx=8π0πsin5xsinx  dx

 =8π0πsin2xcos3x+cos2xsin3xsinx  dx=8π0π2cosxcos3x+(34sin2x)cos2x  dx

 =8π0π(cos4x+3cos2x+cos3xcosx)   dx=8π0π[sin4x4+3sin2x2+sin3x3sinx]0π

Lock Image

Please subscribe our Youtube channel to unlock this solution.