Engineering
Mathematics
Introduction to Determinants
Question

xyzx2y2z2x3y3z3=xyz(xy)(yz)(zx)

True
False
JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution
Verified BY
Verified by Zigyan

Let A=xyzx2y2z2x3y3z3

Taking x, y, z common from C1, C2, C3 respectively, we get,
A=xyz111xyzx2y2z2
Applying C2 → C2 – C1 and C3 → C3 – C1, we get,
A=xyz100xyxzxx2y2x2z2x2
Taking (y – x) and (z – x) common from C2 and from C3
A=xyz(yx)(zx)100x11x2y+xz+x
Expanding along R1,
A = xyz(y – x) (z – x) (z + x – y – x)
A = xyz(x – y) (y – z) (z – x)
Lock Image

Please subscribe our Youtube channel to unlock this solution.