Engineering
Mathematics
Conditional Probability
Question

Of the three independent events E1, E2 and E3, the probability that only E1 occurs is α, only E2 occurs is β and only E3 occurs is γ. Let the probability p that none of events E1, E2 or E3 occurs satisfy the equations (α –2β) p = αβ and (β – 3γ) p = 2βγ.

All the given probabilities are assumed to lie in the interval (0, 1).

Then   Probability  of  occurence  of  E1Probability  of  occurence  of  E3  =

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution

Let the probability of occurrence of event E1, E2 and E3 are a, b and c.

  P(E1) = a, P(E2) = b and P(E3) = c

Given,

P (only E1 occur) =  P(E1E¯2E¯3) = a (1 – b) (1 – c)                                     ……. (1)

P (only E2 occur) =  P(E1E¯2E¯3) = (1 – a) b (1 – c)                                     ……. (2)

P (only E3 occur) =  P(E1E¯2E¯3)  = (1 – a) (1 – b) c                                     ……. (3)

P (none of event occur) = p =  P(E1E¯2E¯3)

  P = (1 – a) (1 – b) (1 – c)                                                                   …….(4)

Given, (α – 2β) p = αβ

   (1β2α) = 1

Put value of p,  α, β from equation (1), (2), (3) and (4)

 we get   1b=2a                                                  …….(5)

Given,  (β3γ)p=28γ(1γ32β) = 2

Put value of  γ, β and p, we get

 1c=3b                                                               …….(6)

From (5) and (6), we get  ac  = 6.

Lock Image

Please subscribe our Youtube channel to unlock this solution.