Engineering
Mathematics
Introduction to Determinants
Question

Show that ΔABC is an isosceles triangle, if the determinant 1111+cosA1+cosB1+cosCcos2A+cosAcos2B+cosBcos2C+cosC=0

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution
Verified BY
Verified by Zigyan

1111+cosA1+cosB1+cosCcos2A+cosAcos2B+cosBcos2C+cosC=0

Applying C1 → C1 C3, C2 → C2 – C3, we get,
001cosAcosCcosBcosC1+cosCcos2A+cosAcos2CcosCcos2B+cosBcos2CcosCcos2C+cosC=0
001cosAcosCcosBcosC1+cosC(cosA+cosC+1)(cosAcosC)(cosB+cosC+1)(cosBcosC)cos2C+cosC=0
Taking (cosA – cosC) common from C1 and (cosB – cosC) common from C2, we get
(cosAcosC)(cosBcosC)001111+cosCcosA+cosC+1cosB+cosC+1cos2C+cosC=0
Expanding along R1,
(cos⁡– cos⁡C)(cos⁡– cos⁡C)[(cos⁡+ cos⁡+ 1) – (cos⁡+ cos⁡+ 1)] = 0

(cos⁡– cos⁡C)(cos⁡– cos⁡C)(cos⁡– cos⁡A) = 0

cos⁡= cos⁡C or cos⁡= cos⁡C or cos⁡= cos⁡A

C or C or A

Hence, ABC is an isosceles triangle.
Lock Image

Please subscribe our Youtube channel to unlock this solution.