Engineering
Mathematics
Integration by Substitution
Question

The integral  sec2x(secx+tanx)9/2dx  equals (for some arbitrary constant K)

 1(secx+tanx)11/2{111+17(secx+tanx)2}+K

 1(secx+tanx)11/2{111+17(secx+tanx)2}+K

 1(secx+tanx)11/2{11117(secx+tanx)2}+K

 1(secx+tanx)11/2{11117(secx+tanx)2}+K

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution

y = sec x + tan x

sec2x – tan2x = 1

 secxtanx=1y

 2secx=y+1ysecx=y2+12y

dy = (sec x tan x + sec2x) dx   dy = y sec x dx dx =dyysecx

 I=sec2x(dyysecx)y9/2=y2+12yy11/2dy=12y2+1y13/2dy=12(y9/2+y13/2)dy

 I=12(y7/27/2+y11/211/2)+K

 I=17(secx+tanx)7/2111(secx+tanx)11/2+K

 I=1(secx+tanx)11/2(111+(secx+tanx)27)+K

Lock Image

Please subscribe our Youtube channel to unlock this solution.