Engineering
Mathematics
Introduction to Determinants
Question

The maximum value of 11111+sinθ1111+cosθ is 12

True
False
JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution
Verified BY
Verified by Zigyan

Let D=11111+sinθ1111+cosθ

∴ D = 1[(1 + sinθ)(1 + cosθ)] – 1[(1 + cosθ) – 1] + 1[1 – (1 + sinθ)]
∴ D = 1 + cosθ + sinθ + sinθcosθ – 1[sinθ] + 1[1 – 1 – sinθ]
∴ D = 1 + cosθ + sinθ + sinθcosθ – cosθ – sinθ
∴ D = 1 + sinθcosθ
For maximum value of D, differentiate w.r.t. θ and equate to zero.
dD=sinθd(cosθ)+cosθd(sinθ)
dD=sinθ(sinθ)+cosθ(cosθ)
dD=sin2θ+cos2θ
For maximum value of θ, dD=0
∴ cos2θ – sin2θ = 0
∴ cos(2θ) = 0
∴ 2θ = cos–1(0)
2θ=π2
θ=π4
Thus, Dmax=1+sinπ4cosπ4
Dmax=1+1212
Dmax=1+12
Dmax=32
Lock Image

Please subscribe our Youtube channel to unlock this solution.