Engineering
Mathematics
Solving System of Linear Equation Cramers Rule
Question

The number of all possible values of θ, where 0 < θ < π, for which the system of equations

  (y + z)cos 3θ = (xyz) sin 3θ

 xsin3θ=2cos3θy+2sin3θz

(xyz) sin 3θ = (y + 2z) cos 3θ + y sin 3θ

have a solution (x0, y0, z0) with y0z0  0, is

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution

(xyz) sin 3θ – y cos 3θ – z cos 3θ = 0                               ....(i)

(xyz) sin 3θ – (2 sin 3θ) y – (2cos 3θ)  z = 0                    ....(ii)

(xyz) sin 3θ – (cos 3θ + sin 3θ)y  –(2 cos 3θ)z = 0            ....(iii)

 |sin3θcos3θcos3θsin3θ2sin3θ2cos3θsin3θcos3θ+sin3θ2cos3θ|=0

 sin3θ.cos3θ|1cos3θ112sin3θ21cos3θ+sin3θ2|=0

sin3θ.cos3θ|1cos3θ112sin3θ01cos3θ+sin3θ0|=0

 sin 3θ . cos 3θ (cos 3θ + sin 3θ – 2 sin3θ) = 0

  sin 3θ . cos 3θ (cos 3θ – sin 3θ )= 0 ......Equation (A)

From given equations,

if sin 3θ = 0 then equation (2) becomes

 2cos3θy=0Nosolution

  sin3θ0

Similarly, if cos 3θ = 0 then equation (1) x = 0

for which equation (2) 0=2sin3θz  which is not possible

   from equation (A)

 cos 3θ – sin 3θ = 0

 or tan 3θ = 1,

 3θ=π4,5π4,7π4

 θ=π12,5π12,7π12

  Number of possible values of θ in (0, π) = 3

Lock Image

Please subscribe our Youtube channel to unlock this solution.