Engineering
Mathematics
Introduction to Determinants
Question

The value of x satisfying the equation cos2x    sin2x    sin2xsin2x    cos2x    sin2xsin2x    sin2x    cos2x=0 and x ε 0,π4 is

π2

π16

π3

π8

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution
Verified BY
Verified by Zigyan

Given, cos2x    sin2x    sin2xsin2x    cos2x    sin2xsin2x    sin2x    cos2x=0; x ε 0,π4

Applying operation : R1→ R1 + R2 + R3, we get
cos2x+2sin2x2sin2x+cos2x2sin2x+cos2xsin2xcos2xsin2xsin2xsin2xcos2x=0

(2sin2x+cos2x)111sin2xcos2xsin2xsin2xsin2xcos2x=0
Now, apply operation
C2 → C2 – C1 and C3 → C3 – C1, we get
(2sin2x + cos2x)
100sin2xcos2xsin2x0sin2x0cos2xsin2x=0
Expanding along R1, we get
(2sin2x + cos2x)(cos2x – sin2x)2 = 0
⇒ 2sin2x + cos2x = 0
or cos2x – sin2x = 0
tan2x=12
or tan2x=1=tanπ4
x12tan112
x=π8ε 0,π4.

Lock Image

Please subscribe our Youtube channel to unlock this solution.