Engineering
Mathematics
Multiplication of Matrices
Symmetric and Skew Symmetric Matrices
Question

Using elementary row transformations, find the inverse of the following matrix:
0    1    21    2    33    1    1

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution
Verified BY
Verified by Zigyan

Let  A=0    1    21    2    33    1    1

we can write  A = IA  ⇒  A–1A = A–1IA.

⇒  I = A–1A.  [we use this idea]

 0    1    21    2    33    1    1=1    0    00    1    00    0    1A.

applying R1 → R1 + R2, we get.

1    3    51    2    33    1    1=1    1    00    1    00    0    1A.

applying R2 → R2 – Rand R3 → R3 – 3R1 we get.

1350120814=110100331A

applying R2 → – R2 , we get.

1350120814=110100331A

applying R3 → R3 + 8R2 , we get.

1    3    50    1    20    0    2=110100531A

applying R1 → R1 – 3R2 , we get.

101012001=2101005/23/21/2A

applying R1 → R1 + R3 and R2 → R2 – 2R3 we get.

1    0    00    1    00    0    1=1/21/21/24315/23/21/2A

Therefore , A1=1/21/21/24315/23/21/2=12111862531

Lock Image

Please subscribe our Youtube channel to unlock this solution.