Engineering
Mathematics
Locus of a Point
Graphs Related Problems in Function
polynomial function
Question

An isosceles right angled triangle whose sides are 1, 1, 2 lies entirely in the first quadrant with the ends of the hypotenuse on the coordinate axes. If it slides prove that the locus of its centroid is (3x - y)2 + (x - 3y)2 = 329.

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution
Verified BY
Verified by Zigyan

b = 2 cosθ         a = 2 sinθ
∴   C' (cosθ2,  sinθ2)
x = 1 . cos(135° – θ) = cosθ2+12sinθ

          
Co-ordinate of orthocenter  = b + x = 2 cosθ – cosθ+sinθ2 = cosθ+sinθ2
y-co-ordinate of orthocenter = y1 = 1 . sin(135° – θ)


       =  cosθ2+12sinθ           
∴    ortho. (cosθ+sinθ2,  cosθ+sinθ2)


        
∴    h =  3cosθ+sinθ32      k =  3cosθ+sinθ32
∴   cosθ = 3k2 – 3sinθ
h =  9(k2sinθ)+sinθ32
32 h = 92k – 8sinθ
sinθ =  32(h3k)8    and     cosθ =  32(k3h)8
∴  sin2θ + cos2θ = 1    (h – 3k)2 + (k – 3h)2 = 649×2    (x – 3y)2 + (y – 3x)2329