Engineering
Physics
Simple Harmonic Motion
Question

The position vector of a particle that is moving in three dimensions is given by 

r=(1+2cos2ωt)i^+(3sin2ωt)j^+(3)k^

in the ground frame. All units are in SI. Choose the correct statement (s) :

The amplitude of the SHM of the particle is 52m.

The particle executes SHM in the ground frame about the mean position (1,32,3)

The particle executes SHM in a frame moving along the z-axis with a velocity of 3 m/s.

The direction of the SHM of the particle is given by the vector (45i^35j^)

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution
Verified BY
Verified by Zigyan

r(t)=(1+2cos2ωt)i^+(3sin2ωt)j^+3k^

r(0)=3i^+3k^

s=r(t)r(0)=(2cos2ωt2)i^+(3sin2ωt)j^

v=dsdt=4ωsinωti^+3ωsin2ωtj^

a=dVdt=4ω2cosωti^+6ω2cos2ωt+j^

s=4sin2ωti^+3sin2ωtj^

v=(4ωsin2ωt)i^+(3ωsin2ωt)j^

a=dVdt=8ω2cos2ωti^+6ω2cos2ωtj^

a^=v^

|a|=10ω2cos2ωt

|v|=5ωwin2ωt

|s|=5sin2ωt=52(1cos2ωt)

|a|=10ω2123|s|

a=10ω24ω2s

a=c1c2ω2x

This is SHM with the mean position shifted from origin.

For mean position,

Vmax.=5ω at t=π4ω

sπ4ω=1i^+32j^+3k^1,32,3

10ω2=12       .... (1)                      5ω=1

Dividing  (2) / (1) :                                25ω2=A2ω12         .... (2)

A=2510=52m

v^=4i^3+3j^5 or 4i^53j^5

→ if a frame is moving with 3 m/s along z-axis, then V will not be in x-y plane whereas a is in x-y plane. So, not SHM.

Lock Image

Please subscribe our Youtube channel to unlock this solution.